24 research outputs found

    Conventional and emerging roles of the energy sensor Snf1/AMPK in Saccharomyces cerevisiae

    Get PDF
    All proliferating cells need to match metabolism, growth and cell cycle progression with nutrient availability to guarantee cell viability in spite of a changing environment. In yeast, a signaling pathway centered on the effector kinase Snf1 is required to adapt to nutrient limitation and to utilize alternative carbon sources, such as sucrose and ethanol. Snf1 shares evolutionary conserved functions with the AMP-activated Kinase (AMPK) in higher eukaryotes which, activated by energy depletion, stimulates catabolic processes and, at the same time, inhibits anabolism. Although the yeast Snf1 is best known for its role in responding to a number of stress factors, in addition to glucose limitation, new unconventional roles of Snf1 have recently emerged, even in glucose repressing and unstressed conditions. Here, we review and integrate available data on conventional and non-conventional functions of Snf1 to better understand the complexity of cellular physiology which controls energy homeostasis

    An Acidic Loop and Cognate Phosphorylation Sites Define a Molecular Switch That Modulates Ubiquitin Charging Activity in Cdc34-Like Enzymes

    Get PDF
    E2 ubiquitin-conjugating enzymes are crucial mediators of protein ubiquitination, which strongly influence the ultimate fate of the target substrates. Recently, it has been shown that the activity of several enzymes of the ubiquitination pathway is finely tuned by phosphorylation, an ubiquitous mechanism for cellular regulation, which modulates protein conformation. In this contribution, we provide the first rationale, at the molecular level, of the regulatory mechanism mediated by casein kinase 2 (CK2) phosphorylation of E2 Cdc34-like enzymes. In particular, we identify two co-evolving signature elements in one of the larger families of E2 enzymes: an acidic insertion in β4α2 loop in the proximity of the catalytic cysteine and two conserved key serine residues within the catalytic domain, which are phosphorylated by CK2. Our investigations, using yeast Cdc34 as a model, through 2.5 µs molecular dynamics simulations and biochemical assays, define these two elements as an important phosphorylation-controlled switch that modulates opening and closing of the catalytic cleft. The mechanism relies on electrostatic repulsions between a conserved serine phosphorylated by CK2 and the acidic residues of the β4α2 loop, promoting E2 ubiquitin charging activity. Our investigation identifies a new and unexpected pivotal role for the acidic loop, providing the first evidence that this loop is crucial not only for downstream events related to ubiquitin chain assembly, but is also mandatory for the modulation of an upstream crucial step of the ubiquitin pathway: the ubiquitin charging in the E2 catalytic cleft

    Anti-aging and neuroprotective properties of Grifola frondosa and Hericium erinaceus extracts

    Get PDF
    The following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/nu14204368/s1. Table S1. Analytes identified by GC/MS on the basis of match with NIST2014 library and the corresponding target ions used to quantify them. Table S2. Yeast strains used in this study. Figure S1 Calibration curve and linear regression curve for ET. Figure S2 Evaluation of interference of fungal extracts on ThT assay. Figure S3. High fungal extract concentrations are toxic for adult flies.Nutrition has relevant consequences for human health and increasing pieces of evidence indicate that medicinal mushrooms have several beneficial effects. One of the main issues in Western countries is represented by the challenges of aging and age-related diseases, such as neurodegenerative disorders. Among these, Parkinson’s disease (PD) affects 10 million people worldwide and is associated with α-synuclein misfolding, also found in other pathologies collectively called synucleinopathies. Here, we show that aqueous extracts of two edible mushrooms, Grifola frondosa and Hericium erinaceus, represent a valuable source of β-glucans and exert anti-aging effects in yeast. Their beneficial effects are mediated through the inhibition of the Ras/PKA pathway, with increased expression of heat shock proteins, along with a consistent increase of both mean and maximal lifespans. These fungal extracts also reduce the toxicity of α-synuclein heterologously expressed in yeast cells, resulting in reduced ROS levels, lower α-synuclein membrane localization, and protein aggregation. The neuroprotective activity of G. frondosa extract was also confirmed in a PD model of Drosophila melanogaster. Taken together, our data suggest the use of G. frondosa and H. erinaceus as functional food to prevent aging and age-related disorders, further supporting the neuro-healthy properties of these medicinal mushroom extracts.We acknowledge financial support from the Italian Ministry of University and Research (MUR) through grant “Dipartimenti di Eccellenza 2017” to University of Milano-Bicocca, Department of Biotechnology and Biosciences. This research was also supported by the Italian Ministry of University and Research (MUR): Dipartimenti di Eccellenza Program (2018–2022) Dept. of Biology and Biotechnology “L. Spallanzani”, and Fondo di Ricerca e Giovani (FRG, University of Pavia). M.L. was supported by a fellowship from Fondazione Umberto Veronesi. R.M. was supported by a fellowship from the Italian Ministry of University and Research (MUR)

    Serine metabolism during differentiation of human iPSC-derived astrocytes

    Get PDF
    : Astrocytes are essential players in development and functions, being particularly relevant as regulators of brain energy metabolism, ionic homeostasis and synaptic transmission. They are also the major source of l-serine in the brain, which is synthesized from the glycolytic intermediate 3-phosphoglycerate through the phosphorylated pathway. l-Serine is the precursor of the two main co-agonists of the N-methyl-d-aspartate receptor, glycine and d-serine. Strikingly, dysfunctions in both l- and d-serine metabolism are associated with neurological and psychiatric disorders. Here, we exploited a differentiation protocol, based on the generation of human mature astrocytes from neural stem cells, and investigated the modification of the proteomic and metabolomic profile during the differentiation process. We show that differentiated astrocytes are more similar to mature rather than to reactive ones, and that axogenesis and pyrimidine metabolism increase up to 30 days along with the folate cycle and sphingolipid metabolism. Consistent with the proliferation and cellular maturation processes that are taking place, also the intracellular levels of l-serine, glycine, threonine, l- and d-aspartate (which level is unexpectedly higher than that of d-serine) show the same biosynthetic time course. A significant utilization of l-serine from the medium is apparent while glycine is first consumed and then released with a peak at 30 days, parallel to its intracellular level. These results underline how metabolism changes during astrocyte differentiation, highlight that d-serine synthesis is restricted in differentiated astrocytes and provide a valuable model for developing potential novel therapeutic approaches to address brain diseases, especially the ones related to serine metabolism alterations

    The Regulatory Role of Key Metabolites in the Control of Cell Signaling

    No full text
    Robust biological systems are able to adapt to internal and environmental perturbations. This is ensured by a thick crosstalk between metabolism and signal transduction pathways, through which cell cycle progression, cell metabolism and growth are coordinated. Although several reports describe the control of cell signaling on metabolism (mainly through transcriptional regulation and post-translational modifications), much fewer information is available on the role of metabolism in the regulation of signal transduction. Protein-metabolite interactions (PMIs) result in the modification of the protein activity due to a conformational change associated with the binding of a small molecule. An increasing amount of evidences highlight the role of metabolites of the central metabolism in the control of the activity of key signaling proteins in different eukaryotic systems. Here we review the known PMIs between primary metabolites and proteins, through which metabolism affects signal transduction pathways controlled by the conserved kinases Snf1/AMPK, Ras/PKA and TORC1. Interestingly, PMIs influence also the mitochondrial retrograde response (RTG) and calcium signaling, clearly demonstrating that the range of this phenomenon is not limited to signaling pathways related to metabolism

    AMPK Phosphorylation Is Controlled by Glucose Transport Rate in a PKA-Independent Manner

    No full text
    To achieve growth, microbial organisms must cope with stresses and adapt to the environment, exploiting the available nutrients with the highest efficiency. In Saccharomyces cerevisiae, Ras/PKA and Snf1/AMPK pathways regulate cellular metabolism according to the supply of glucose, alternatively supporting fermentation or mitochondrial respiration. Many reports have highlighted crosstalk between these two pathways, even without providing a comprehensive mechanism of regulation. Here, we show that glucose-dependent inactivation of Snf1/AMPK is independent from the Ras/PKA pathway. Decoupling glucose uptake rate from glucose concentration, we highlight a strong coordination between glycolytic metabolism and Snf1/AMPK, with an inverse correlation between Snf1/AMPK phosphorylation state and glucose uptake rate, regardless of glucose concentration in the medium. Despite fructose-1,6-bisphosphate (F1,6BP) being proposed as a glycolytic flux sensor, we demonstrate that glucose-6-phosphate (G6P), and not F1,6BP, is involved in the control of Snf1/AMPK phosphorylation state. Altogether, this study supports a model by which Snf1/AMPK senses glucose flux independently from PKA activity, and thanks to conversion of glucose into G6P

    Nutritional modulation of CK2 in Saccharomyces cerevisiae: regulating the activity of a constitutive enzyme

    No full text
    CK2 is a highly conserved protein kinase involved in different cellular processes, which shows a higher activity in actively proliferating mammalian cells and in various types of cancer and cancer cell lines. We recently demonstrated that CK2 activity is strongly influenced by growth rate in yeast cells as well. Here, we extend our previous findings and show that, in cells grown in either glucose or ethanol-supplemented media, CK2 presents no alteration in K(m) for both the ATP and the peptide substrate RRRADDSDDDDD, while a significant increase in V (max) is observed. In chemostat-grown cells, no difference of CK2 activity was observed in cells grown at the same dilution rate in media supplemented with either ethanol or glucose, excluding the contribution of carbon metabolism on CK2 activity. By using the eIF2 beta-derived peptide, which can be phosphorylated by the holoenzyme but not by the free catalytic subunits, we show that the holoenzyme activity requires the concurrent presence of both beta and beta' encoding genes. Finally, conditions of nitrogen deprivation leading to a G0-like arrest result in a decrease of total CK2 activity, but have no effect on the activity of the holoenzyme. These findings newly indicate a regulatory role of beta and beta' subunits of CK2 in the nutrient response

    租税ト社會政策

    Get PDF
    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and metabolism. Accumulation of unfolded proteins within the calcium-depleted lumen of the endoplasmic reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections linking disturbance of ER calcium equilibrium to ER stress and UPR signaling are evolutionary conserved and highlight the crucial role of metabolism in modulating the effects induced by calcium shortage
    corecore